Post-processing

ndj_pipeline.post

Post-model fit reporting of results as plots, summary tables and documentation.

ndj_pipeline.post.create_continuous_plots(df, reporting_features, model_config)

Create line plot to show how target varies according to feature.

No returns; saves assets to model folder.

Parameters
  • df (DataFrame) – Full, feature rich dataframe, must contain config specified target, and numeric feature columns specified by reporting_features

  • reporting_features (List[str]) – List of features to produce individual plots

  • model_config (Dict[str, Any]) – Loaded model experiment config

Return type

None

ndj_pipeline.post.create_correlation_matrix(df, reporting_features, model_config)

Create correlation matrix between subset of reported features.

No returns; saves assets to model folder.

Parameters
  • df (DataFrame) – Full, feature rich dataframe, must contain config specified target, and numeric feature columns specified by reporting_features

  • reporting_features (List[str]) – List of features to produce individual plots

  • model_config (Dict[str, Any]) – Loaded model experiment config

Return type

None

ndj_pipeline.post.create_metrics_plot(results, model_config, name='')

Produce metrics and scatterplot for results table.

No returns; saves assets to model folder.

Parameters
  • results (DataFrame) – DataFrame with “Actual” and “Prediction” columns

  • model_config (Dict[str, Any]) – Loaded model experiment config

  • name (str) – Simple label added to outputs, helpful to distinguish models

Return type

None

ndj_pipeline.post.create_univariate_plots(df, reporting_features, model_config)

Create scatterplots with linear fit for each feature against target.

No returns; saves assets to model folder.

Parameters
  • df (DataFrame) – Full, feature rich dataframe, must contain config specified target, and numeric feature columns specified by reporting_features

  • reporting_features (List[str]) – List of features to produce individual plots

  • model_config (Dict[str, Any]) – Loaded model experiment config

Return type

None